
REQUEST FOR COMMENTS
MyAccount NG web application

Problem & Context

And we progress with project Highlander Babel is slowly being phased out in
preference of CommerceTools and as such applications and systems that depend
upon Babel either need to be deprecated or replaced.

Currently user authentication and management is still handled by a number of older
babel web pages (which in turn query Babel API) that have yet to be migrated over to
the Rollercoaster platform; this RFC will lay out the scope of the migration alongside a
list of technology choices considered for the new platform.

Considered, but out of Scope

The migration of user management over from Babel to Commercercetools has been
broken down into Four distinct phases.

1. Replacement of user authentication interfaces (using existing babel
session flow)
2. Replace account management interfaces.

a. Profile preferences
b. Credits
c. Albums
d. Creations

3. Split user & credentials migration into Commercetools.
a. Migrate base user entity and credentials

4. Entirely new set of user and authentication services with JWT/OIDC.
a. Cognito authentication handlers
b. Middleware authentication layer
c. Localisation of orchestration endpoints

5. Fully migrate all user data as a separate project.



This RFC will only focus on the first phase of the migration, the replacement of the
user authentication UI.

Project constraints

- Design resources are limited and given our rather tight deadlines we cannot
wait on full UX/UI design.
- Originally a new team was allocated to pick up the MyAccount project, now all
work will be done by core team members.

Technical constraints

- Must be a whitelabel solution and support multiple brands
- Babel is very slow, as such UX and technology choices need to minimize the
impact of this on our customers.

Technical requirements

- All API requests will go via orchestration-v2.
- All Artifacts will be deployed to AWS.
- The application will use the React framework.
- The application will be written in Typescript.
- E2E tests will use Cypress.
- Unit tests will be written with Jest.
- The application must support Experimentation via external configuration.
- The build pipeline will use Github actions.

Security constraints

Currently whenever a new babel session cookie is created the policy settings applied
are known to be insecure.



OWASP recommends that cookies which contain sensitive information are flagged as
HttpOnly, however this is not feasible within the photobox estate due to how a
number of the older applications retrieve and submit session tokens.

Babel web extracts session tokens using nested Javascript which would no longer
function if the session cookie was flagged as HttpOnly.

mStudio also relies on the session cookie being accessible via Javascript, as such until
both Babel web and mStudio have been decommissioned we cannot flag the session
cookies as HttpOnly.

It should be noted that we are aware of the security implications of this decision, but
we cannot fix these deficiencies until Babel Web & mStudio have been
decommissioned (Phase 4 of the my account migration).

Longer term we wish to address this constraint.

https://owasp.org/www-community/HttpOnly


General assumptions

- User accounts will be scoped per brand.
- Longer term we wish to add 3rd party login support (Google, facebook and so

on)
- The apps will use native (Babel) authentication for phase one, this may change

when we integrate social login.

High level architecture

Current architecture

The current architecture is pretty simple, whenever you visit a Photobox site a new
cookie is created and it’s name is scoped to the locale domain.

Most applications contain logic to generate this cookie

Proposal one

This is the simplest of the two proposal’s when only considering Phase one of the “My
Account” migration, but the overhead required to adapt it for Phase four would be
notable.



TLDR; a new authentication web application will be created, deployed and made
available via a subdomain for each of our supported brands/locales. Etc the
authentication web application for photobox.co.uk would be made available
my.photobox.com (actual domain TBD).

And within this subdomain the authentication web application would be made
available via scoped URL, the following example uses photobox.co.uk.

- The login UI would be my.photobox.com/identity/login
- The register UI would be my.photobox.com/identity/register
- The password UI URL would be my.photobox.com/identity/password-reset

Note there will only be one deployment of the authentication web application but it
will be served (masked) across multiple domain names.

Given that cookies are always scoped to the current locale of a user that is logged into
(say photobox.co.uk) a user currently needs to login again if they change locales (say
navigate to photobox.fr). It should be noted that this is an edge case but we do provide
quick locale switching via the web headers. Proposal 2 will allow for multi locale logins.



This new application will be very minimal and only allow for user login, registration and
password resets. The actual user management application would be built as a separate
application in phase two of the migration.

Please note we have made a number of assumptions based on competitor analysis
and general security trends/guidance.

The authentication flow will remain nearly identical to the current babel flow.

The application will call orchestration-v2 (which in turn calls babel) to generate a babel
session and then simply set the same session cookie.



At a high level we would only need to build a fairly simple react app that can proxy calls
to orchestration-v2 and set cookies.

There are also a number of additional considerations.

We eventually plan to move away from insecure cookies and implement HttpOnly
session cookies, This in turn means that the authentication application cannot be
purely Client side. HttpOnly cookies can only be set and read server side and are
completely hidden from web clients.

This single consideration dictates that the React application needs to be server side
rendered (SSR) even if we do not plan to implement HttpOnly cookies during phase
one.

There is an argument to be made that session tokens should be stored in localstorage
and not cookies, this argument is also valid given that a cookie's value cannot exceed
4096 bytes.

However the general consensus is that session tokens should be stored as secure
HttpOnly cookies. This is the OWASP recommendation and it is a pattern followed by
most web applications.

Despite most large technology platforms supporting localstorage based session
storage (such as AWS cognito/amplify) they do not use it within their own core
products.

It should be noted that we plan for this application to become the Photobox
authentication gateway, unlike other applications which are only used in isolation and



security (whilst still a concern) is not as important given the scoped nature of the
session tokens they store.

HttpOnly Attribute¶

The HttpOnly cookie attribute instructs web browsers not to allow scripts (e.g. JavaScript or VBscript) an
ability to access the cookies via the DOM document.cookie object. This session ID protection is mandatory
to prevent session ID stealing through XSS attacks. However, if an XSS attack is combined with a CSRF
attack, the requests sent to the web application will include the session cookie, as the browser always
includes the cookies when sending requests. The HttpOnly cookie only protects the confidentiality of the
cookie; the attacker cannot use it offline, outside of the context of an XSS attack.

But it should be noted that we do not need to (nor can we) implement HttpOnly
cookies currently as it would break a number of our legacy applications.

We would also need to localize orchestration for every brand/locale domain that we
currently operate.

This model aligns with ASOS if you would like to navigate an already existing solution.

Proposal two

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#httponly-attribute




Technical architecture

React rendering pipeline

A separate RFC has been created with additional information on React rendering
pipelines which can be found here.

Recommendation:

Server side rendered application (SSR)

https://docs.google.com/document/d/1iq50TyJtYxFLCVOZF_goHKsbA0h8FUDrD9QOsA0c_lM/edit#


To framework or not to framework

A separate RFC has been created with additional information on React frameworks
which can be found here.

Recommendation:

Custom application that can support SSR for user authentication and CSR for account
management.

React state management

A separate RFC has been created with additional information on React state
management which can be found here.

Recommendation:

React Context in conjunction with redux and redux sagas.

Avoid connected containers.

Styling methodology

A separate RFC has been created with additional information regarding CSS styling
methodologies which can be found here.

Recommendation:

Tailwind alongside emotion

https://docs.google.com/document/d/1djv7i1BzdmXXGFOoH40TdU2vMRFpsz2XM-8IIYMYVJA/edit#
https://docs.google.com/document/d/1KW6CJx6ZkhIXOx1WdNKnJdNBAKFwjD8aUSxYyWrzYQ0/edit#
https://docs.google.com/document/d/1djv7i1BzdmXXGFOoH40TdU2vMRFpsz2XM-8IIYMYVJA/edit#


Application bundler

Recommendation:

Webpack 5.0

Deployment framework

Recommendation:

Serverless 2.0 >

CI/CD

Recommendation:

Github actions

Technology stack summary.

- Server side rendered SSR.
- Custom React app.
- React Context state along with redux and redux-sagas.
- Tailwind CSS with emotion ui.
- Webpack 5.0
- Serverless framework



Domain configuration

Both proposals will require that an authentication application is deployed to it’s own
subdomain for each of our locales.

- my.photobox.co.uk
- my.photobox.fr
- my.photobox.ie
- my.photobox.de
- my.photobox.it
- As so on

This will also have an impact on our deployment pipelines and their domains,
currently we only utilize the photobox.com domain and each of the locales are
assigned subdomains from the TLD.

If proposal one is chosen then additional work will need to be done in regards to
service localisation.

Given our longer term desire to flag all authentication cookies as HttpOnly we need to
ensure that all resources are available from the same domain. For example a cookie
scoped to *.photobox.co.uk and marked as HttpOnly will only be submitted for
requests either within the TLD (top level domain) or subdomains (such as
my.photobox.com).

As such ecom-orchestration-v2 would need to have additional domain names per
brand/locale.

https://graph.photobox.co.uk or https://photobox.co.uk/graphl.

If proposal two was chosen then the HttpOnly cookie issue goes away, given that
authentication is always pushed to a service deployed within photobox.com for
photobox and hofmann.es for hofmann that domain will always have the session
cookie available.

https://graph.photobox.co.uk
https://graph.photobox.co.uk


Deployment

Given the suggestion that the authentication application should utilize SSR and the
user management app should use CSR we need to ensure that our deployment
process can accommodate both approaches.

We can follow our standard deployment process with the serverless framework via
Github actions.

Each feature branch will be given it’s own feature build that can be used for online
testing and regression testing.

The application will be deployed to new locale specific sub-domains.

We have examples of both react CSR and SSR serverless configurations.

https://github.com/photobox/ecom-account-web/blob/main/custom-ssr-sls-browser/s
erverless-full.yml

Experimentation

We currently have a fully functional AB test API that is used to dice roll experiment
variants. We simply need to hook up the existing experiment service into the
web-application and then we can make use of existing AB testing libraries that are
already available with the react ecosystem.

One of the more common react AB testing libraries is `@marvelapp/react-ab-test`
which has native react hook integration and you can toggle on a debug component
allowing for experiment component testing.

Dependencies & Integration

There are no technical dependencies for phase one, however design resources will be
required.

https://github.com/photobox/ecom-account-web/blob/main/custom-ssr-sls-browser/serverless-full.yml
https://github.com/photobox/ecom-account-web/blob/main/custom-ssr-sls-browser/serverless-full.yml
https://github.com/photobox/ecom-user-alloc-service


Infrastructure

- AWS Lambda (for application).
- AWS S3 (for application assets).
- Maybe AWS Elasticache (to cache nonce keys).

Scale & Performance

Given that all authentication calls will still query Babel all of our current scalability
constraints will still apply.

However the applica itself will be deployed as a Lambda function so the application in
itself has almost limitless scalability.

Reliability

The Application will only be as reliable as Babel.

Redundancy

If Babel is down the application will also be down.

Monitoring & Instrumentation

Dynatrace and Sentry will be implemented from the start giving us visibility into the
application.

Failure Scenarios

If the Babel API goes down all authentication requests will fail.

If there is an interruption to AWS then the application will not be accessible.

Security

We know that there will be a number of security issues regarding cookies, however
these are accepted risks given the flaws are already present within babel and we have
a plan to remedy them.



Privacy

Operational Implications

The application will be owned by core.

Future Directions

Please see

Rollout

The application will be rolled out and tested in isolation, once we have confidence in
it’s reliability all login, registration and password resets to babel will be redirected to
the new application.

Competitor Analysis

https://docs.google.com/document/d/1-KAJD-y58vbLlTaY8lzCBYzfMod_W8VEvLf9tFx_kC
g/edit

Current state of MyAccount

https://docs.google.com/document/d/10y-qbTq6LAnkeyV3xsdMG8TUfmXt6yKMtOo-7O
Eylo0/edit

Risks & Open Questions

https://docs.google.com/document/d/1-KAJD-y58vbLlTaY8lzCBYzfMod_W8VEvLf9tFx_kCg/edit
https://docs.google.com/document/d/1-KAJD-y58vbLlTaY8lzCBYzfMod_W8VEvLf9tFx_kCg/edit
https://docs.google.com/document/d/10y-qbTq6LAnkeyV3xsdMG8TUfmXt6yKMtOo-7OEylo0/edit
https://docs.google.com/document/d/10y-qbTq6LAnkeyV3xsdMG8TUfmXt6yKMtOo-7OEylo0/edit

