REQUEST FOR COMMENTS

Product and Theme Data Management

Problem & Context

Throughout the Shop and Editor ecosystem, the “source of truth” for our product
and creation data resides in a number of GIT Repositories which contain manually
maintained, hardcoded JSON files.

Two of the main ones being the Rollercoaster Data Modelling repository, which
contains all product specific data from physical definitions to marketing and sales
definitions. As well as the Design Data repository, which contains assets available to
customers in the Editor, such as Backgrounds, Decorations and Fonts.

https://github.com/photobox/rollercoaster-data-modelling

https://github.com/photobox/ecom-design-data

GIT was chosen originally for a few reasons, namely it allowed the development of
the customer facing platform to progress at a faster pace. It was also chosen due to
the inherent versioning capabilities of GIT along with the familiarity that most
developers have with it.

Given that all of the product and design data is stored inside GIT repositories, only
developers have access. This method of data persistence has created a number of
issues. It is also extremely inefficient and has dramatically slowed down both
product launches and developer capacity, of which could otherwise be used to
deliver more customer value.

We need to remove this bottleneck and remove the need for dedicated engineering
resources. As such we have concluded that we need to build a Ul that can be used
by the wider business to perform product and design data updates without input or
assistance from engineering. The solution will require an APl and Database as a
persistent store for the data.

https://github.com/photobox/rollercoaster-data-modelling
https://github.com/photobox/ecom-design-data

Current Data Source

The main purpose of this RFC is to outline how the data, once migrated, will be
managed. There are a number of points to take into consideration when thinking
about how the data will flow from source to destination. We also need to think
about the different types of users that will come to manage it in both short and
longer term scenarios. The document will cover the following points and additional
follow-up RFCs may be required off the back of any section.

1. Database versioning and backups

2. Saved vs published data

3. Keeping different environments in Sync

4. Bulk updates

5. Transitioning to the new model

6. Integrations and potential overlap with CommerceTools
Solution

Architecture

The is the top-level architecture diagram of the ecom ecosystem. The red sections
are to be replaced by the green sections as part of the work scoped out at the
beginning of the mStudio migration project (planboard data changes likely to be
descoped in the short term). It has been included to highlight where the in the
ecosystem data flow from and to.

GET/PUT/POST JSON F

r———T—TT=TT==== a i GET .

‘ | Orchestration APs

| GIT JSON |

I REPOS | Orch V1

| |

. Bulk Upload

| RC Data Model t Entity APIs S

| | DynamoDB GET

} Design Data : Tabes Content API

| | T T

| Planboard Data ' GQL Request QL Request

| | __Bulk Upload | Publish d

| | s3 'change sets

L — = J

) Sho Editor ' '
Publish approved Publish approved P gldftidgpieinlgaioi _
********************** \'********’”******’; sk } mStudio
arew — —— L |]|
|
|
Product Planboard Design Product } Navigate to
Service Service Service Service | Navigate to
|
DB DB DB DB | l
Cluster Cluster Cluster Cluster I Production
. | Checkout | _
Product QA Data | | Planboard Data | ‘ Design Data ‘ ’ Product Data | Babel

w
|

QA Feedback and/or Event Triggers

Factory Teams

Database version and backups

A previous REC for Themes outlined the high level architecture for managing the
design data in a Ul. The product data will follow a very similar pattern for
consistency. This previous RFC was reviewed by the DBOps team and, given the
nature of our product and design data, it was agreed that DocumentDB would be
the most appropriate solution for the Database.

DocumentDB is an Amazon managed NO-SQL Document database that is forked
from the widely adopted MongoDB. It is a document-oriented database that
provides native indexes, elastic scaling along with a powerful query language. Being
a document-oriented database it is ideally suited to JSON like documents such as
the ones we currently maintain in files. The JSON-like structure afforded by Mongo
does present a rather elegant way in which we can handle document versioning.

Documents can have a self-contained revision history. There are a couple of ways
you can store historical versions:

1. Each object in the history would be the complete document from that point
in time.
2. Each object in the history would just be the change set applied.

Key Value Type
=3 (1) Objectld("5fcf62bb1b9626cdb7b8e18d") {9 fields }
_id Objectld("5fcf62bb1b9626cdb7b8e18d")
* uuid 846a7ee7-aede-464f-9¢71-08a2dfda58a2

active

" created

true
2020-12-08 11:25:47.453Z

7 updated 2020-12-08 12:05:19.450Z
@3 history [4 elements]
3 [0] { 6 fields }
3 [1] { 6 fields }
3 [2] { 6 fields }
3 [3] { 6 fields }
" label photobox
=3 current { 6 fields }

3l physicalSupport
_id

#| version

3l relationships
1 taggedRelationships
=3 properties

-

A

[O elements]
Objectld("5fcf62bb1b9626cdb7b8e18e")
5

[O elements]

[O elements]

{3 fields }

4

https://docs.google.com/document/d/1bmEMsyPkr06AD4EnkVayrude7Wc9zUsJSnPdbM24eYc/edit?usp=sharing

As with anything there are pros and cons to the two approaches. The pro to only
storing the changeset is that you're reducing how much data you're duplicating in
the history. Documents have a limit of 1T6MB so this does potentially become
important. The downside is complexity, to revert to a previous version you need to
apply all the change sets in order. For this reason the recommendation would be to
go with the first option and store the entire document. It is the simpler
implementation and as our individual documents are relatively small in size the
limit on storage should be minimal. To get around this further we can also look at
setting a limit on the number of historical documents that can be stored. Having
time/quantity based limits on version history is a common pattern.

When querying the API we would always return the current document by default.

Alternative Approach

Documents are stored in Collections (similar to Tables in a traditional SQL DB),
another solution could be to have a “shadow collection” for each. The main
collection would contain the most recent data for the stored document. The
“shadow collection” would contain every historical record. This allows us to
separate the current and historical data and removes the concern around max
document size. However, it is a lot more overhead to maintain.

Database backup strategies are discussed later in this document under the
Redundancy section.

Saved vs published data

In the current ecosystem data is managed by engineers and, through Jenkins
pipelines or deployment scripts, flows from development to staging and once
tested and approved, production. However, eventually the target audience for the
new platform will not be engineers but any internal Photobox Group employees
with the proper permissions to log into the new data portal Ul and manage the
data.

The other issue we have at the moment is that product data testing, particularly
physical print testing, can only happen in production. We could potentially look at
implementing a flow to get Staging working but physical print QA can take a long

time and having data which is still in QA will ultimately get wiped out on staging
through other BAU updates and we would need to constantly keep it in sync.

The proposed solution to the above is for the users of the new data portal to work
on data changes in the production environment. Of course, we need to make sure
that we can preview and approve any changes we make because they're made like
to customers. This means we need a concept of a “saved” stated and “published”
state in the data.

The solution here follows on very nicely from the previous discussions around
keeping historical versions of documents in the database. We can surface these
versions in the Ul (a model similar to how ContentStack manages versions for
published data) to make it very obvious to the users which version is currently
published. Saved but not yet published data will be previewable on the site via
query string parameters to pull through versioned data rather than the live
published version of the data.

There shouldn't be a need to publish across environments but this will be discussed
in a bit more detail further down.

& English - United Kingd... ~ Version 71 Revisions

Status

PUBLISH STATUS &

Development
Version 71 publishet
By Ben Steinberg

Staging
Version 71 publishet
By Ben Steinberg
Load more
Sandbox
Version 71 published & days ago
By Ben Steinberg

With the above approach the flow for both Product and Design Data would be:

1. A user makes an update to a document and clicks save. A new version of the
document is created.

2. The new version is exported out to the relative services (e.g. to S3 and the
design service for design data and the entity apis for the product data).

3. The new version can be previewed on the relevant production domain by
passing a query parameter to request that new version specifically. (The data
portal could even have a preview link out for ease).

4. Once approved the user can publish that version to all / relevant locales if
applicable.

5. Once published, the published version is updated in the database. The
timestamp and author of the published action is also stored. The relevant
updates are made in the client services to point the live data to the new
version of the data (e.g. for the design data server the new s3 file will be
copied to the current file).

In future iterations of the data portal we could even look to have scheduled publish
actions.

Keeping different environments in Sync

Whilst having users of the data portal only working in the production environment,
with saved and published data is a very nice flow for data management and QA, it
does present an issue for developers.

There will be times where new features are being worked on in development or
staging and data, which was only added in production, is needed. Or perhaps there
is an issue that needs to be debugged out of production. There are a few options
here:

1. Similar to ContentStack, we allow data to be published across environments.
The issue with this is that it relies on the users remembering to select all the
environments. Alternatively, as we're only talking about going from
production to dev/staging, we could automatically publish any updates to
those environments but it will slow down the process and be more costly.

2. We can look into DocumentDB Change Streams, change streams allow you to
watch for data changes or any kind and then perform some action or process
on that data. The issue here is cost, we'd need to have an EC2 (or similar
stood up server) which would watch all the data constantly, it maybe possible
that something could go wrong or be missed and the data would get out of
sync anyway.

3. We have a scheduled runner, either nightly or more often, which would sync
the production databases to dev and staging (potentially we might even be
able to copy the db snapshots from production and restore those in
dev/staging). The downside here is that the dev and staging databases would
only periodically get updated, but the approach is a lot simpler to implement
and maintain.

As a starting point my recommendation is always to keep things as cheap and
simple as possible and then iterate. As such option 3 would be the
recommendation here. We could start with nightly data syncs and see how this
worked as a workflow. If engineers found it a big pain point we could either
increase the rate of data sync processes, allow them to be triggered manually or
look at an entirely different solution.

Bulk updates

Moving away from a process of managing data in JSON files to instead using a Ul
has a number of benefits. However, it does potentially have one downside that
when bulk updates are needed, it is not as simple as a find / replace in a JSON file.
That said once a find/replace might be easier it is far more prone to human error,
hence the decision to move away.

With the new system we want to make sure bulk updates are still possible and
whilst the process might be a bit more effort, it shouldn't impact productivity for
the engineer. Time added setting the data should be saved in time validating the
changes and deploying time.

https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html

There are a couple of ways we can achieve. First, is by designing a Ul that allows
some data to be set in bulk. E.g. have an area in the portal where you can set a
stock level and apply it to multiple products/locales (instead of setting the stock
solely on a product by product basis).

The APl will need to be built to accept bulk updates to support this Ul. We will build
this “api first”, the APl should have the ability to bulk update all entity types,
regardless of whether a related section of the Ul exists yet. The benefit here is that
if there is a bulk update which the Ul does not yet support, short term scripts can
be written to call the APl endpoints directly with bulk updates. Going via the API
rather than direct to the DB means we can ensure all data updates are validated
accurately.

Transitioning to the new model

Another consideration is how to manage on-going work in the existing data
repositories whilst the new systems are being built and worked on and when
exactly there should be a “hard switch” for all teams to the new system.

We have built some idempotent import scripts which can be run to re-import the
latest data into the database. However, the issue is at the point we start adding new
data to the new system, merging the updates from to sources becomes very tricky.

Design data

With the design data the updates are less regular and managed by fewer people
and teams. It will be less complicated to agree to a switch point and the
recommendation is to do a hard switch at the earliest convenience. We need to be
sure the switch won't impact the teams needing to use it, even if the data portal is
not “complete”, we should be able to make BAU updates as normal.

The data portal will be used to create themes, both “default” themes as part of the
design toolkit for products as well as themes that will be browsed via the Shop.
However, we can do a switch before the functionality exists simply by ensuring we
can export the “design design” which is the JSON that is currently being used for all
products and creations. The plan is to initially just have this exporting, switch away
from the JSON repository and then move forward with Themes.

Product data

There is some potential overlap of requirements here with the data being proposed
to move to CommerceTools. These dependencies need to be aligned and agreed
before we can move forward with a decision on what product data the portal needs
to be managing and when the switch from the existing JSON model should happen.
These dependencies and integrations are discussed more in the next section.

Dependencies & Integration

Integrations and potential overlap with CommerceTools

At the moment there is still a lot of discovery and POC work happening with
CommerceTools. So far the following has been highlighted by the Core team as
entities of the product data that they see being moved over to CommerceTools:

Product

Variant

Range

Stock

LODs
Recommendation
Options

Option Groups

In terms of what would remain to move into the data portal it would be mostly
physical product definitions, namely:

e Physical Variants
e Physical Supports

If this is the case it reduces the scope of work to enable Product Data management
in the data portal but it does raise some additional questions around timelines of
objectives.

Initially the idea to move Product Data came from the long term goal of being able
to add new products via a Ul. For the time being should all product data (except the
physical entities mentioned) remain where it is until the CommerceTools
integration is up and running?

Design updates for Cards and the Editor Core team

The Editor Core team are looking at themes for cards, we have initiated a number
of discussions and meetings around how we can best align our goals, timelines and
backlog to support each other.

Initially the data portal will be built very much as an MVP. It will have the foundation
aspects discussed in this document around how data is managed and a basic
form-based Ul for using / testing the flow. The Editor Core will then work on top of
this to build out a nicer more optimised Ul for building themes to be used by the
wider team.

Infrastructure

The infrastructure has been outlined in a previous REC.

Now that the Database solution has been agreed we know that this will require
three new managed DocumentDB Clusters to be created along with a dedicated
VPC and security group. One of each for development, staging and finally
production.

Scale & Performance

The data portal is strictly an internal tool and as such there are no real performance
concerns on that side. That said, the solution will still use serverless technology so
we can be confident it will scale nicely to the limits of Lambda and the throughput
limits of DocumentDB.

In future we might want to update orchestration layers to call the data portal API
directly to get data and remove the complexity of additional services. If and when
this happens, the serverless approach should support such a model but of course
some load testing would be needed and likely some work to look at the size and
scaling options of the database.

https://docs.google.com/document/d/1bmEMsyPkr06AD4EnkVayrude7Wc9zUsJSnPdbM24eYc/edit#heading=h.mexyofy5779h

Reliability

Amazon DocumentDB is designed for 99.99% availability and replicates six copies of
your data across three AWS Availability Zones (AZs). You can use AWS Database
Migration Service (DMS) for free (for six months) to easily migrate your on-premises
or Amazon Elastic Compute Cloud (EC2) MongoDB databases to Amazon
DocumentDB with virtually no downtime.

Redundancy

DocumentDB continuously backs up to S3 for 1-35 days, allowing us to quickly
restore to any point within the backup retention period. DocumentDB also takes
automatic snapshots of the data as part of this continuous backup process.

Along with general backups of the database we will also keep track of data changes
within the data so we can track what was changed when, by whom and, if needed,
revert back to an older version of the data.

Monitoring & Instrumentation

This is largely non-customer facing so we will just use CloudWatch alerts and logs to
monitor any issues.

Failure Scenarios

A regular backup policy will be inplace to ensure we have a constant way to rollback
to a recent dataset in case of a disaster.

The Data Portal will publish data out to other services in the short term. This gives
us a nice safety net because in a situation where some incorrect or broken data is
published to production, at the same time the database falls over meaning that we
can not correct the issue, we can still manually correct it if we need to.

Security

Access to the Database will be strictly limited to the API. The API itself will be
secured heavily with Cognito. Only authenticated users will be able to modify or
publish data.

Privacy
No customer data will be stored as such there will be no privacy concerns.
Operational Implications

A lot of the work being done here will eventually be picked up by other teams, i.e.
the Editor Team might pick up the theme and design data management side and
the Core Team might pick up whatever remains of the product data management.

We're in constant communication with both teams but we need to make sure we
remain aligned on what is being built, how it is being built and why.

Most of the risks and open questions at the moment are around inter-team
dependencies. We need to make sure timelines and objectives are understood and
aligned.

At the moment a big piece is how Themes will work for, both generally and for
Cards with CommerceTools:

1. How will themes be set up in CommerceTools?

2. How will we link a creative theme to a marketable theme?

3. How will we manage product (and more specifically) variant associations to
themes?

4. How will we define default product themes?

There is still a lot of uncertainty here but initial conversations have been kicked off
and a separate REC is being worked on.

https://docs.google.com/document/d/1gYw-kcsLmmnwW_JERJ8UujIrH6vqVnSX2QvtpIeu1-w/edit?usp=sharing

Some initial ideas and thoughts:

1.

In CommerceTools (and/or the existing RCDM) we need a property added to
Products and Variants e.g. “defaultThemeld” which will be used to define
which default theme should be used in the Editor for that particular
product/variant.

As a general rule we should attempt to keep Themes at a product level but if
necessary we need the ability to assign at a variant level.

When the Editor loads a variant (without a preselected theme) it will look for
a variant theme id, if it can not find one it should fall back to the product
theme id.

Many additional themes should be available to search and browse in the
Shop, these would be defined as Categories in CommerceTools.

When a Theme is created in the data portal, on save(?) we would need to
make a number of API calls to CommerceTools to create the theme category
and set up the required product/variant associations. A possible workflow
might be:

A new theme is added to the data portal:

- Auser adds a name, description, thumbnail (would these need to go
up to ContentStack?)

- Auser adds the product and variant associations by RC IDs

- On Save (as we want to be able to preview - is this an issue in
CommerceTools as you can only save/publish categories?) we make a
call to CommerceTools to create new theme category and sub
category (include external theme id attribute)

- Make additional calls to CommerceTools to update all associated
products with the new CT theme sub-category

- Forvariant associations we need to update a custom attribute on the
product with links to the themes that can be picked up by variants?

All of the above is very much still in discovery and is all still open to change.

