
REQUEST FOR COMMENTS
Transformation service

Problem & Context

There is a need to be able to transform a creation from variant X to variant Y, where
X and Y might not belong to the same product.
Here are a few examples of possible transformations ordered by complexity, where
the simplest are at the top and the most complex at the bottom:

Source Target

Simple Canvas 30x30 Framed Canvas 30x30

Canvas 20x20 Canvas 40x40

Canvas 20x20 Canvas 50x75

A4 Classic Photobook A3 Classic Photobook

A4 Classic Photobook Square Spiral Book

A4 Classic Photobook A4 Cut Out Cover Book

A4 Classic Photobook Little Moments Book

A4 Layflat Any other non layflat book

A “basic” transformation service is already in place, here’s a simple representation
of the existing data flow:



Considered, but out of Scope

N/A

Solution

There are two areas of complexity to a transformation, one with how we translate
the elements to the new surface (imagine we’re going from a portrait surface to a
panoramic surface) and the other is as to how we relate the components from one
product to the components from another, so let’s discuss these in separate
sections.

Component matching

Creations have arrays of Components, each of which has a type property which is
used by the planboard data to define how these are ordered/grouped together.

Here’s a representation of the components for a Standard A4 Hardcover, a Black A4
Cut Out and a Square Spiral Book as returned by the creation service:

As we can see, although all these
products are “Books” their
composition is drastically different:

● Non matching component
types

● Missing “equivalent” types
● Different minimum/maximum

page counts
● Different component order
● Potential product restrictions

(we don’t print the covers of
cutout books, so we shouldn’t
move content there)



Due to all the differences highlighted above, this leads us to using a concept we’re
already familiar with in Editor, Planboards.
In order to match the different components from one product to another, we
should have planboards that define what each component maps to in the target
product (these would be variant agnostic as all variants in a product share the
same component types).
The format of these planboards is up for discussion further down in the document.

Here’s how the updated diagram would look like:

Now with the above in mind, we need to be aware that there are still limitations
with such a service, e.g:

● If going from a product with 100 max pages to one with 80 max pages, we’d
have to trim the last ones

● If going from a product that allows a customisable spine to one without a
spine, we’d have to lose the spine text

● Some transformations are nearly impossible, e.g. layflat books with full
spread photos can never be truly translated to normal books which have
traditional binding.



Transformation planboard structure

The planboard structure we go with is of vital importance for the success of this
feature as we want it to be flexible enough to support all our use cases whilst
keeping it simple enough so we avoid any unexpected “features”.

Here’s what a transformation definition looks like to transform a standard A4 book
to a little moments book:
{

"components": [

{ "origin": "FRONT-COVER", "target": "LITTLE-MOMENTS-FRONT-COVER" },

{ "origin": "SPINE", "target": "SPINE" },

{ "origin": "INSIDE-FRONT-COVER", "target": "INSIDE-FRONT-COVER" },

{ "origin": "PAGE", "target": "PAGE-LITTLE-MOMENTS" },

{ "origin": "INSIDE-BACK-COVER", "target": "INSIDE-BACK-COVER" },

{ "origin": "BACK-COVER", "target": "LITTLE-MOMENTS-BACK-COVER" }

]

}

Due to how our creations are defined, these are quite re-usable across different
products, in fact the transformation above could be used for transforming both the
standard A4/A3 or the portrait book to a little moments book.

As such a transformation definition does not belong to a “source” productId, or a
target productId and instead can be shared across multiple products depending on
how the product is defined. Therefore these should live in a transformations folder,
which is product agnostic.

└── transformations
├── 065404d4-7ad3-4c62-8cfe-4921d8d50ef0.json
├── 972d33c9-ce16-4469-9eea-2ae1d8bd0e40.json
└── b43268f5-15b6-4fa5-a33f-6097dbce0943.json

The product will then define which transformations are possible as well as which
transformation definition to use, e.g:
{

"transformations": [

{

"target": "productId",

"transformation": "transformationId"

},



...

],

...

}

Whether these will link to productIds or variantIds is still TBD, although the initial preference is productIds,

unless there is a strong reason to use variantIds.

Element translation

Translating elements from one component to another of a different size, will always
be performed on a “best effort” basis as achieving perfection here is nigh
impossible depending on the circumstances.
With the above in mind, this section can be divided into four distinct categories, so
let’s tackle each of them individually.

Photos

Photos are positioned on the page within an aperture and apertures have relative
coordinates and dimensions, so those can simply be copied across.
Photo elements however, also contain a position property, which contains both
width and height defined in mm. These dimensions are linked to the physical
aperture size, so when moving these elements to a component with different
dimensions, these values will need to be recalculated.

Another point to consider is positioning of the photo within the aperture as this will
vary drastically if changing between components with very different ratios, here’s
an example of how the aperture ratio affects photo positioning:



As such for MVP, we’ll simply be centering the photo inside the aperture, a further
improvement would be to use the AI services to detect faces or other points of
interest and center the photo around those.

Decorations

Decorations are much like photos, with one major difference, the aperture ratio
always matches the decoration ratio.
So when moving decorations to a different ratio component, we’ll have to
recalculate both the decoration.position.width, decoration.position.height and also
the aperture.position.height and aperture.position.width.

Text

There’s two main variables that control how text is displayed on the page, these are
font size and the aperture width.

Font size is obvious as these will make the font bigger/smaller and in this case, we
need to calculate the % difference between the current component height and the
new component height, we then apply this ratio to our font size and pick the
closest allowed font size from the sizes which that font supports.
We can look at integrating the component width into these calculations as well,
however I’m unsure if that would give us good results.

The aperture width is relevant to how text is displayed as this is what tells the Editor
to break text to a new line. As apertures are already positioned and sized relative to
the parent component, we don’t need to do anything here as when the creation is
loaded on the Editor, it will recalculate the new line breaks.
It’s worth pointing out though that ALL text in the creation will need have its line
breaks re-calculated and at the moment, this only occurs when the customer views
the component.

Backgrounds

Backgrounds are set as a property of the component, this is simply a background
property which contains a backgroundId.
There is nothing wrong with how backgrounds are defined in the component,
however the current structure of backgrounds in the design data poses a problem.



Currently if we have a “Leaves” background, we’ll in fact have 3 or 4 different
artefacts, one for each ratio (square, landscape, portrait, panoramic). The problem
here is that each of these link to a separate background object each one with their
unique backgroundId and if we have the id to the “Leaves - square” background,
there is no way for us to know what the id to the other corresponding ratios is.

As such we should expand the existing background schema, so that instead of a
background having a single src property, it would instead contain a src property for
each ratio. Then the Editor could pick which one to use depending on the ratio of
the component.
This would mean that for the transformation purposes, we’d simply have to copy
the background property to the new component.

Architecture

● What does this service or feature look like? Please draw diagrams where
possible (Google drawings, Lucidchart, photos of whiteboards/pad
paper...)

● Why does it look like that?
● Consider the service/feature boundaries; what business capability is this

service responsible for?
● What data does it own?

Dependencies & Integration

How does it interact with existing services/functionality/components, both upstream and
downstream? Consider both existing and planned software and services.

Interfaces

The interface exposed will be the same as the current MVP service exposes.

Infrastructure

This would be a standard Lambda function.

Scale & Performance

Lambda.



Reliability

N/A

Redundancy

N/A

Monitoring & Instrumentation

N/A

Failure Scenarios

N/A

Security

N/A

Privacy

N/A

Operational Implications

This service will be owned and monitored by the Editor team.

Future Directions

There are some ongoing talks regarding transformations to a different Theme, once
we have more concrete requirements for this, we should look to extend the
transformation endpoint and potentially re-use some of our element translation
logic.

These transformations will need to be offered to customers (on the Editor I
assume?), as such we’ll need a place to define which transformations are possible.



Rollout

The existing transform MVP already handles image elements and image apertures,
with this in mind, I’d suggest the following order of works:

1. Introduce support for simple transformations across different sized variants
of the same product (Canvas)

2. Introduce support for transforming decorations & text (without accounting
for rotation)

3. Introduce simple product transformation planboards (switch to variants on
different simple products)

4. Introduce complex product transformation planboards (same ratio products)
5. Improve background asset definition, so we can support background

transformations across components with different ratios
6. Introduce complex transformations across different ratio products
7. Improve element translations by factoring rotation into the calculations
8. Layflats ?

The layflats transformation may be pushed up/down depending on how we want to
handle these transformations, i.e. “if transforming a full spread photo to a normal
book, should we simply apply this to a single page, or should we try to split the photo
across two pages?“, the former would be quite simple to achieve, while the latter will
require some custom calculations to account for all the different layout options.
With this said though, supporting layflat -> different sized layflat transformations
should be quite straightforward and could be done in step 3.

Risks & Open Questions

N/A

Alternative Approaches

If you considered and rejected some alternative approaches, describe them. Someone
reading this design might think one of these options was intuitively more obvious and it
would help to explain why we are not following it.


